Thursday, March 20, 2014

Differentiation of norm


Suppose f:RmRn. Decompose into f=(f1,,fn). Each fi is a real-valued function, i.e.fi:RmR. Then
g(X)=f(X)2=i=1nfi(X)2.
Therefore,
g(X)=12(i=1nfi(X)2)12(i=1n2fi(X)fi(X))=ni=1fi(X)fi(X)f(X)2.
This matches your answer.

If you want to write in terms of the Jacobian matrix of f instead of components fi, you can:



g(X)=Jf(X)Tf(X)f(X)2.

No comments:

Post a Comment